Unit 9: Represent and Apply Trigonometry | | 4 – Mastery | 3 – Proficient | 2 - Basic | 1 – Below Basic | 0 – No
Evidence | |---|---|--|---|--|--| | Interpret key
features(F.IF.4) | Can extend thinking beyond the standard, including tasks that may involve one of the following: | Identify and compare key features of two functions represented in <u>all</u> of the following ways algebraically graphically tables in context | Identify and compare key features of two functions represented in three of the following ways algebraically graphically tables in context | Identify and compare key features of two functions represented in <u>two</u> of the following ways algebraically graphically tables in context | Little evidence of reasoning o application to solve the problem Does not meet | | Average rate of change (F.IF.6) Graph exponential and logarithmic functions; key features(F.IF.7e) | Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving | Calculate the average rate of change over a given interval and explain the meaning in context. Graph trigonometric functions and interpret all related key features of a graph in context of a real world situation Asymptotes | Calculate the average rate of change over a given interval Graph trigonometric functions and identify all related key features of a graph asymptotes period | Describe the average rate of change over a given interval Given the graph or equation of trigonometric functions, identify all related key features of a graph asymptotes | the criteria in a
level 1 | | | | PeriodMidlineamplitude | midline amplitude | periodmidlineamplitude | | | Compare
functions from
different
representations
(F.IF.9) | | Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts domain/range increasing or decreasing positive or negative symmetries end behavior | Compare key features of two functions represented | Compare key features of two functions represented | | | Transformations
using k (F.BF.3) | | Identify the effect on a graph by replacing $f(x)$ with more than two transformations: $f(x) + k$, $a f(x)$, $f(bx)$, $f(x + h)$ for specific positive and negative values of the constants a , b , h , and k | Identify the effect on a graph by replacing $f(x)$ with two transformations: $f(x) + k$, $a f(x)$, $f(bx)$, $f(x + h)$ for specific positive and negative values of the constants a , b , h , and k | Identify the effect on a graph by replacing $f(x)$ with a single transformation: $f(x) + k$, $a f(x)$, $f(bx)$, $f(x + h)$ for specific positive and negative values of the constants a, b, h, and k | | | | | Write a function given more than two transformations. | Write a function given two transformations. | Write a function given <u>a</u> transformation. | | | Model with
trigonometric
functions
(F.TF.5) | | Given a specified amplitude, frequency, and midline for a real world situation, create a sine, cosine and/or tangent function | Given the sine, cosine or
tangent function for a
real world situation,
identify the amplitude,
frequency <u>and</u> midline | Given the sine, cosine or tangent function for a real world situation, identify the amplitude, frequency or midline | | | Inverse
construction
(F.TF.6) | Construct an invertible trigonometric function by restricting the domain so that the function is always increasing or decreasing | Identify a domain that will allow construction of the inverse of a trigonometric function, because the function would be always increasing or decreasing | Given a portion of a trigonometric graph, identify if that part of the graph is invertible | |---|---|--|--| | Inverse
functions to
solve (F.TF.7) | Use inverse functions to solve trigonometric equations with restricted and unrestricted domains and interpret the solutions in context of the situation | Use inverse functions to solve trigonometric equations with restricted and unrestricted domains | Use inverse functions to solve trigonometric equations with <u>restricted</u> <u>domains</u> |